BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 45, 946—947(1972)

Cycloaddition of Spiro[2.4]hepta-4,6-diene to Tropone

Hiroshi Tanida, Toshisada Yano, and Masako Ueyama* Shionogi Research Laboratory, Shionogi and Co., Ltd., Fukushima-ku, Osaka (Received August 16, 1971)

Cycloaddition of cyclopentadiene to tropone leading to exo-tricyclo[4.4.1.1^{2,5}]dodeca-3,7,9-trien-11-one was reported by Cookson et al.1) and by Itō et al.2) as the first example of a thermal [6+4] cycloaddition which had been predicted by Hoffmann and Woodward.3) Whereas in [4+2] cycloaddition dimethylfulvene reacts with dienophile in the same way as cyclopentadiene does,4) in [6+4] cycloaddition the fulvene was reported to react with tropone as a 6π electron addend due to participation of the exocyclic double bond, the final product being a 2: 1 adduct of tropone and the fulvene.⁵⁾ From our interest in the alteration of the reaction pattern we carried out cycloaddition of spiro[2.4]hepta-4,6-diene (1) to tropone (2). Since cyclopentadiene, dimethylfulvene, and 1 all react in a uniform way in the [4+2] cycloaddition, it would be of interest to know the behavior of 1 in the addition reaction with tropone and, particularly, to determine whether or not the cyclopropane ring in 1 takes part displaying its masked unsaturation character.

When a mixture of an equimolar amount of 1 and 2 was heated at 110°C for 6 days in a tube sealed under nitrogen, two major products in a 79:16 percent ratio were indicated by vpc, together with two minor products in a total 5%. The vpc peak ratio of the two major products was constant through the reaction period, indicating that they are kinetically-controlled. The 79 and 16% products (3 and 4) were isolated by

a preparative gas chromatograph $(2 \text{ m} \times 15 \text{ mm})$ and shown to be both 1: 1 adducts by elementary analyses and molecular weight determinations (osmometry and mass spectroscopy). Catalytic reduction of the adducts over PtO_2 in ethanol resulted in an uptake of 3 mol of hydrogen and in acetic acid that of 4 mol of hydrogen indicating the presence of three double bonds and one

cyclopropane ring. The UV and IR properties indicate the presence of an $\alpha\beta$ -unsaturated carbonyl group for both the adducts, and consequently, the absence of a [6+4] cycloaddition type product as observed in the reaction of cyclopentadiene.

Conformatory evidence for the indicated structures 3 and 4 was obtained from the 100 MHz PMR spectra, in which the signal assignments were performed by double resonance technique. The NMR parameters (first-order analyses) are summarized in Table 1. It was concluded that the orientation of the cyclopentene moieties in both the adducts was *endo* by the relatively small vicinal $J_{1,2}$ and $J_{6,7}$ and by the presence of longrange ${}^4J_{2,11}$ and ${}^4J_{6,12}$ due to the "W" arrangements of

Table 1. NMR data of the adducts (3 and 4)

1) Chemical shift, τ

	Solvent	H ₁	$\overline{\mathrm{H_{2}}}$	H_3	H_4	H_5	H_6	H ₇	H_8	H ₉	H ₁₁	H ₁₂
	(CCl ₄	6.89	7.46		4.91	4.72	6.35	6.75	2.99	4.42	4.00	3.76
3	$\left\{ \mathrm{C_6D_6} \right.$	6.73	7.55	_	5.08	4.88	6.64	7.27	3.43	4.26	4.16	3.96
	$(\varDelta au^{\mathrm{a}})$	-0.16	0.09		0.17	0.16	0.29	0.52	0.44	-0.16	0.16	0.20
	$_{CCl_{\mathtt{4}}}$	6.68	6.58	4.58	4.95	_	7.16	7.12	3.12	4.39	4.03	3.70
4	$\left\{ \mathbf{C_6D_6} \right.$	6.55	6.69	4.82	4.14		7.47	7.66	3.61	4.26	4.19	3.98
	$(\varDelta au^{\mathrm{a}})$	-0.13	0.11	0.24	0.19	_	0.31	0.54	0.49	-0.13	0.16	0.28

a) $\Delta \tau \equiv \tau$ in $C_6 D_6 - \tau$ in CCl_4

2) Coupling constant, Hz.

	$J_{1,2}=2.0$	$J_{1,9}=1.9$	$J_{1,5} = \sim 0.2$	$J_{1,11}=7.4$	$J_{1,12}=1.2$	$J_{2,6}=8.8$
3	$\{J_{2,11}=\sim 0.6$	$J_{4,5} = 5.4$	$J_{4,6}=1.9$	$J_{5,6}=2.1$	$J_{6,7} = 2.0$	$J_{6,12} = \sim 0.5$
	$J_{7,8}=8.8$	$J_{7,9}=0.9$	$J_{7,11} = 1.2$	$J_{7,12} = 6.9$	$J_{8,9} = 11.0$	$J_{11,12}=8.6$
	$J_{1,2}=2.1$	$J_{1,9}=1.9$	$J_{1,11}=7.3$	$J_{1,12}=1.2$	$J_{2,3}=2.2$	$J_{2,4}=1.8$
4	$\{J_{2,6}=8.8$	$J_{2,11}=0.7$	$J_{3,4}=5.7$	$J_{3,7} = \sim 0.4$	$J_{6,7}=2.2$	$J_{6,12} = 0.6$
	$J_{7,8}=8.7$	$J_{7,9}=0.7$	$J_{7,11}=1.2$	$J_{7,12}=6.8$	$J_{8,9} = 11.1$	$J_{11,12}=8.7$

^{*} Née Ohtsuru.

¹⁾ R. C. Cookson, B. V. Drake, J. Hudec, and A. Morrison, Chem. Commun. 1966, 15

²⁾ S. Itō, Y. Fujise, T. Okuda, and Y. Inoue, This Bulletin, 39, 1351 (1966).

³⁾ a) R. Hoffmann and R. B. Woodward, J. Amer. Chem. Soc., 87, 2046, 4388 (1965). b) R. B. Woodward and R. Hoffmann,

[&]quot;The Conservation of Orbital Symmetry," Verlag Chemie GmbH-Academic Press Inc., Weinheim (1970), pp. 83—85.

⁴⁾ A. S. Onischchenko, "Diene Synthesis," Israel Program for Scientic Translations, Jerusalem (1964).

⁵⁾ a) K. N. Houk, L. J. Luskus, and N, S. Bhacca, *J. Amer. Chem. Soc.*, **92**, 6392 (1970). b) N. S. Bhacca, L. J. Luskus, and K. N. Houk, *Chem. Commun.*, **1971**, 109.

related protons. The values of $J_{1,2}$ and $J_{6,7}$ are of nearly the same magnitude as the corresponding coupling constants reported for the major [4+2] adduct of cyclopentadiene with 2-chlorotropone, 1-chlorotricyclo-[5.3.2.0^{2,6(exo)}]dodeca-3,8,11-trien-10-one.⁶⁾ Relative configuration (anti or syn) of the cyclopropane ring and the carbonyl group in 3 and 4 was determined by the following observations: the presence of spin-couplings between H₆ (or H₂) and the olefinic protons in 3 (or in 4) (determinable by double resonance experiments); the relatively higher-field positions of H₁ and H₂ signals in 3 and those of H₆ and H₇ in 4 arising from the long-range anisotropy effect of the cyclopropane ring; and the presence of long-range couplings between H_1 and H_5 in $3 (^5J_{1,5})$ and H_3 and H_7 in 4 $(^{5}J_{3,7})$ located in the zigzag paths.

Thus it is found that, with tropone, cyclopentadiene reacts as a 4π electron addend, dimethylfulvene as a 6π addend, and the present **1** as a 2π addend. In comparison to the reaction conditions reported for cyclopentadiene and dimethylfulvene, ^{1,2,5)} the occurrence of reaction of **1** seems to require the severest conditions. A molecular model suggests that the [6+4] cycloadduct from **1** and **2** (5), if formed, would have severe steric compression around the cyclopropane ring and the butadiene bridge, so that this cycloaddition process would be strongly retarded and the cyclopentadiene moiety in **1** compelled to react as a 2π addend

6) S. Itō, K. Sakan, and Y. Fujise, Tetrahedron Lett., 1969, 775.

toward the 4π electron system in 2, despite the higher activation energy required.

Experimental

Melting points were taken in capillary tubes and are corrected. Infrared spectra were determined with a Nippon Bunko IR-S spectrometer, ultraviolet spectra with a Hitachi EPS-3T spectrometer, and NMR spectra with a Varian A-60A and HA-100. VPC analysis was carried out on a Hitachi gas chromatograph K-53 equipped with a hydrogen flame ionization detector, using a $1 \text{ m} \times 3 \text{ mm}$ glass column packed with 5% XE 60 on Chromosorb W.

Reaction of 1 with 2. Diene 1 was prepared by the reported method.⁷⁾ A mixture of 1.5 g of 1 and 1.6 g of 2 was placed in a tube, sealed under nitrogen, and heated at 110°C for 6 days. VPC analysis of the reaction mixture revealed two major products (3 and 4) in a 79:16 percent ratio, with two minor products in a total 5%. Isolation of 3 and 4 was carried out by a Yanagimoto gas chromatograph GCG-3 equipped with 2 m×15 mm glass column packed with 5% XE 60 on Chromosorb W. With a column temperature 180°C and helium carrier gas 300 ml/min, the retention times were 25 min for 3 and 31 min for 4. Recrystalliaztion of the 3 fraction thus isolated from n-pentane gave colorless crystals, mp 66—66.5°; mass spectrum (70 eV) m/e 198 (parent peak); molecular weight by osmometry 192; UV λ_{max} (95% EtOH): 225 m μ (shoulder, ε 7000), 265 (1800); IR (CHCl₃): 1660 cm⁻¹ (CO). Found: C, 84.76; H, 7.17%. Calcd for C₁₄H₁₄O: C, 84.81; H, 7.12%. Recrystallization of the 4 fraction from n-pentane gave colorless crystals, mp 96.3—97.0°C; mass spectrum (70 eV) m/e 198 (parent peak); UV λ_{max} (95% EtOH): 230 m μ (shoulder, ε 5370), 260 (2000); IR (CHCl₃): 1656 cm⁻¹ (CO). Found: C, 85.10; H, 7.14%. Calcd for C₁₄H₁₄O: C, 84.81; H, 7.12%. NMR data for 3 and 4 are summarized in Table 1.

⁷⁾ C. F. Wilcox, Jr., and R. R. Craig, J. Amer. Chem. Soc., 83, 3866 (1961) and references cited therein.